Strongly polarized quantum-dot-like light emitters embedded in GaAs/GaNAs core/shell nanowires.

نویسندگان

  • S Filippov
  • M Jansson
  • J E Stehr
  • J Palisaitis
  • P O Å Persson
  • F Ishikawa
  • W M Chen
  • I A Buyanova
چکیده

Recent developments in fabrication techniques and extensive investigations of the physical properties of III-V semiconductor nanowires (NWs), such as GaAs NWs, have demonstrated their potential for a multitude of advanced electronic and photonics applications. Alloying of GaAs with nitrogen can further enhance the performance and extend the device functionality via intentional defects and heterostructure engineering in GaNAs and GaAs/GaNAs coaxial NWs. In this work, it is shown that incorporation of nitrogen in GaAs NWs leads to formation of three-dimensional confining potentials caused by short-range fluctuations in the nitrogen composition, which are superimposed on long-range alloy disorder. The resulting localized states exhibit a quantum-dot like electronic structure, forming optically active states in the GaNAs shell. By directly correlating the structural and optical properties of individual NWs, it is also shown that formation of the localized states is efficient in pure zinc-blende wires and is further facilitated by structural polymorphism. The light emission from these localized states is found to be spectrally narrow (∼50-130 μeV) and is highly polarized (up to 100%) with the preferable polarization direction orthogonal to the NW axis, suggesting a preferential orientation of the localization potential. These properties of self-assembled nano-emitters embedded in the GaNAs-based nanowire structures may be attractive for potential optoelectronic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum dots in the GaAs/AlxGa12xAs core-shell nanowires: Statistical occurrence as a function of the shell thickness

Quantum dots (QDs) embedded in nanowires represent one of the most promising technologies for applications in quantum photonics. Self-assembled bottom-up fabrication is attractive to overcome the technological challenges involved in a top-down approach, but it needs post-growth investigations in order to understand the self-organization process. We investigate the QD formation by selfsegregatio...

متن کامل

Suppression of non-radiative surface recombination by N incorporation in GaAs/GaNAs core/shell nanowires

III-V semiconductor nanowires (NWs) such as GaAs NWs form an interesting artificial materials system promising for applications in advanced optoelectronic and photonic devices, thanks to the advantages offered by the 1D architecture and the possibility to combine it with the main-stream silicon technology. Alloying of GaAs with nitrogen can further enhance performance and extend device function...

متن کامل

Gain optimization of the optical waveguide based on the quantum box core/shell structure

In order to implement an integrated optical quantum circuit, designing waveguides based on the quantum box is of prime importance. To do this we have investigated optical waveguide both with and without optical pumping. The rate of absorption and emission using an array of AlGaAs/GaAs quantum box core/shell structure in the optical waveguide with various pumping intensities has computed. By con...

متن کامل

Gain optimization of the optical waveguide based on the quantum box core/shell structure

In order to implement an integrated optical quantum circuit, designing waveguides based on the quantum box is of prime importance. To do this we have investigated optical waveguide both with and without optical pumping. The rate of absorption and emission using an array of AlGaAs/GaAs quantum box core/shell structure in the optical waveguide with various pumping intensities has computed. By con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 35  شماره 

صفحات  -

تاریخ انتشار 2016